181 research outputs found

    Statistics of Multiple Sign Changes in a Discrete Non-Markovian Sequence

    Full text link
    We study analytically the statistics of multiple sign changes in a discrete non-Markovian sequence ,\psi_i=\phi_i+\phi_{i-1} (i=1,2....,n) where \phi_i's are independent and identically distributed random variables each drawn from a symmetric and continuous distribution \rho(\phi). We show that the probability P_m(n) of m sign changes upto n steps is universal, i.e., independent of the distribution \rho(\phi). The mean and variance of the number of sign changes are computed exactly for all n>0. We show that the generating function {\tilde P}(p,n)=\sum_{m=0}^{\infty}P_m(n)p^m\sim \exp[-\theta_d(p)n] for large n where the `discrete' partial survival exponent \theta_d(p) is given by a nontrivial formula, \theta_d(p)=\log[{{\sin}^{-1}(\sqrt{1-p^2})}/{\sqrt{1-p^2}}] for 0\le p\le 1. We also show that in the natural scaling limit when m is large, n is large but but keeping x=m/n fixed, P_m(n)\sim \exp[-n \Phi(x)] where the large deviation function \Phi(x) is computed. The implications of these results for Ising spin glasses are discussed.Comment: 4 pages revtex, 1 eps figur

    Persistence in higher dimensions : a finite size scaling study

    Full text link
    We show that the persistence probability P(t,L)P(t,L), in a coarsening system of linear size LL at a time tt, has the finite size scaling form P(t,L)Lzθf(tLz)P(t,L)\sim L^{-z\theta}f(\frac{t}{L^{z}}) where θ\theta is the persistence exponent and zz is the coarsening exponent. The scaling function f(x)xθf(x)\sim x^{-\theta} for x1x \ll 1 and is constant for large xx. The scaling form implies a fractal distribution of persistent sites with power-law spatial correlations. We study the scaling numerically for Glauber-Ising model at dimension d=1d = 1 to 4 and extend the study to the diffusion problem. Our finite size scaling ansatz is satisfied in all these cases providing a good estimate of the exponent θ\theta.Comment: 4 pages in RevTeX with 6 figures. To appear in Phys. Rev.

    Exact Occupation Time Distribution in a Non-Markovian Sequence and Its Relation to Spin Glass Models

    Full text link
    We compute exactly the distribution of the occupation time in a discrete {\em non-Markovian} toy sequence which appears in various physical contexts such as the diffusion processes and Ising spin glass chains. The non-Markovian property makes the results nontrivial even for this toy sequence. The distribution is shown to have non-Gaussian tails characterized by a nontrivial large deviation function which is computed explicitly. An exact mapping of this sequence to an Ising spin glass chain via a gauge transformation raises an interesting new question for a generic finite sized spin glass model: at a given temperature, what is the distribution (over disorder) of the thermally averaged number of spins that are aligned to their local fields? We show that this distribution remains nontrivial even at infinite temperature and can be computed explicitly in few cases such as in the Sherrington-Kirkpatrick model with Gaussian disorder.Comment: 10 pages Revtex (two-column), 1 eps figure (included

    Exact Phase Diagram of a model with Aggregation and Chipping

    Full text link
    We revisit a simple lattice model of aggregation in which masses diffuse and coalesce upon contact with rate 1 and every nonzero mass chips off a single unit of mass to a randomly chosen neighbour with rate ww. The dynamics conserves the average mass density ρ\rho and in the stationary state the system undergoes a nonequilibrium phase transition in the (ρw)(\rho-w) plane across a critical line ρc(w)\rho_c(w). In this paper, we show analytically that in arbitrary spatial dimensions, ρc(w)=w+11\rho_c(w) = \sqrt{w+1}-1 exactly and hence, remarkably, independent of dimension. We also provide direct and indirect numerical evidence that strongly suggest that the mean field asymptotic answer for the single site mass distribution function and the associated critical exponents are super-universal, i.e., independent of dimension.Comment: 11 pages, RevTex, 3 figure

    Persistence in a Stationary Time-series

    Full text link
    We study the persistence in a class of continuous stochastic processes that are stationary only under integer shifts of time. We show that under certain conditions, the persistence of such a continuous process reduces to the persistence of a corresponding discrete sequence obtained from the measurement of the process only at integer times. We then construct a specific sequence for which the persistence can be computed even though the sequence is non-Markovian. We show that this may be considered as a limiting case of persistence in the diffusion process on a hierarchical lattice.Comment: 8 pages revte

    Persistence of a Continuous Stochastic Process with Discrete-Time Sampling: Non-Markov Processes

    Full text link
    We consider the problem of `discrete-time persistence', which deals with the zero-crossings of a continuous stochastic process, X(T), measured at discrete times, T = n(\Delta T). For a Gaussian Stationary Process the persistence (no crossing) probability decays as exp(-\theta_D T) = [\rho(a)]^n for large n, where a = \exp[-(\Delta T)/2], and the discrete persistence exponent, \theta_D, is given by \theta_D = \ln(\rho)/2\ln(a). Using the `Independent Interval Approximation', we show how \theta_D varies with (\Delta T) for small (\Delta T) and conclude that experimental measurements of persistence for smooth processes, such as diffusion, are less sensitive to the effects of discrete sampling than measurements of a randomly accelerated particle or random walker. We extend the matrix method developed by us previously [Phys. Rev. E 64, 015151(R) (2001)] to determine \rho(a) for a two-dimensional random walk and the one-dimensional random acceleration problem. We also consider `alternating persistence', which corresponds to a < 0, and calculate \rho(a) for this case.Comment: 14 pages plus 8 figure

    Nonequilibrium phase transitions in models of adsorption and desorption

    Full text link
    The nonequilibrium phase transition in a system of diffusing, coagulating particles in the presence of a steady input and evaporation of particles is studied. The system undergoes a transition from a phase in which the average number of particles is finite to one in which it grows linearly in time. The exponents characterizing the mass distribution near the critical point are calculated in all dimensions.Comment: 10 pages, 2 figures (To appear in Phys. Rev. E

    Random Convex Hulls and Extreme Value Statistics

    Full text link
    In this paper we study the statistical properties of convex hulls of NN random points in a plane chosen according to a given distribution. The points may be chosen independently or they may be correlated. After a non-exhaustive survey of the somewhat sporadic literature and diverse methods used in the random convex hull problem, we present a unifying approach, based on the notion of support function of a closed curve and the associated Cauchy's formulae, that allows us to compute exactly the mean perimeter and the mean area enclosed by the convex polygon both in case of independent as well as correlated points. Our method demonstrates a beautiful link between the random convex hull problem and the subject of extreme value statistics. As an example of correlated points, we study here in detail the case when the points represent the vertices of nn independent random walks. In the continuum time limit this reduces to nn independent planar Brownian trajectories for which we compute exactly, for all nn, the mean perimeter and the mean area of their global convex hull. Our results have relevant applications in ecology in estimating the home range of a herd of animals. Some of these results were announced recently in a short communication [Phys. Rev. Lett. {\bf 103}, 140602 (2009)].Comment: 61 pages (pedagogical review); invited contribution to the special issue of J. Stat. Phys. celebrating the 50 years of Yeshiba/Rutgers meeting

    Scaling fields in the two-dimensional abelian sandpile model

    Get PDF
    We consider the isotropic two-dimensional abelian sandpile model from a perspective based on two-dimensional (conformal) field theory. We compute lattice correlation functions for various cluster variables (at and off criticality), from which we infer the field-theoretic description in the scaling limit. We find a perfect agreement with the predictions of a c=-2 conformal field theory and its massive perturbation, thereby providing direct evidence for conformal invariance and more generally for a description in terms of a local field theory. The question of the height 2 variable is also addressed, with however no definite conclusion yet.Comment: 22 pages, 1 figure (eps), uses revte

    Avalanches and the Renormalization Group for Pinned Charge-Density Waves

    Get PDF
    The critical behavior of charge-density waves (CDWs) in the pinned phase is studied for applied fields increasing toward the threshold field, using recently developed renormalization group techniques and simulations of automaton models. Despite the existence of many metastable states in the pinned state of the CDW, the renormalization group treatment can be used successfully to find the divergences in the polarization and the correlation length, and, to first order in an ϵ=4d\epsilon = 4-d expansion, the diverging time scale. The automaton models studied are a charge-density wave model and a ``sandpile'' model with periodic boundary conditions; these models are found to have the same critical behavior, associated with diverging avalanche sizes. The numerical results for the polarization and the diverging length and time scales in dimensions d=2,3d=2,3 are in agreement with the analytical treatment. These results clarify the connections between the behaviour above and below threshold: the characteristic correlation lengths on both sides of the transition diverge with different exponents. The scaling of the distribution of avalanches on the approach to threshold is found to be different for automaton and continuous-variable models.Comment: 29 pages, 11 postscript figures included, REVTEX v3.0 (dvi and PS files also available by anonymous ftp from external.nj.nec.com in directory /pub/alan/cdwfigs
    corecore